Cytotoxic Apigenin Derivatives from Chrysopogon aciculatis

Chien-Chang Shen, ${ }^{\dagger}$ Jing-Jy Cheng, ${ }^{\dagger}$ Horng-Liang Lay, ${ }^{*}$ Szu-Yuan Wu, ${ }^{\S, \perp}$ Ching-Li Ni, ${ }^{\perp}$ Che-Ming Teng, II and Chien-Chih Chen*, ${ }^{*}$
${ }^{\dagger}$ National Research Institute of Chinese Medicine, Taipei, Taiwan, Republic of China
${ }^{\ddagger}$ Department of Plant Industry, National Pingtung University of Science and Technolog, Pingtung, Taiwan, Republic of China
${ }^{\S}$ Department of Radiation Oncology, Chia-Yi Christian Hospital, Chia Yi City, Taiwan, Republic of China
${ }^{\perp}$ Department of Biotechnology, Hungkuang University, Taichung, Taiwan, Republic of China
"Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China

(S) Supporting Information

Abstract

Four new apigenin derivatives, 7-de-O-methylaciculatin (1), 8-C- β-d-boivinopyranosylapigenin (2), aciculatinone (3), and $4^{\prime}-O$-glucosylaciculatin (4), along with eight known compounds, apigenin-8-carbaldehyde (5), kaempferol, tricin, taxifolin, 6,7,4'trihydroxyflavone, trans-oxyresveratrol, aciculatin, and luteolin- 7 -sulfate, were isolated from an ethanolic extract of Chrysopogon aciculatis. Their chemical structures were elucidated by spectroscopic methods. Among the known compounds, the natural occurrence of apigenin-8-carbaldehyde and luteolin-7sulfate is demonstrated for the first time. Some of the isolates were evaluated for cytotoxic activity against human cancer cell lines including MCF-7, H460, HT-29, and CEM.

The whole grass of Chrysopogon aciculatis (Poaceae) has been used as pasturage in Taiwan. A DNA binding agent, aciculatin, was isolated from this plant in the previous study. ${ }^{1}$ Recently, as part of our program on the discovery of potential cytotoxic principles from natural sources, ${ }^{2-6}$ the EtOH extract of C . aciculatis was partitioned with $\mathrm{H}_{2} \mathrm{O}$ and EtOAc , and the latter extract was found to show potent cytotoxicity against human tumor cells. Further investigation of C. aciculatis led to the isolation and characterization of four new apigenin derivatives (1-4) and eight known compounds. The structures of the known compounds were elucidated on the basis of spectroscopic methods or identified by comparison of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with literature data. Some of the isolates were evaluated for their cytotoxic activities against human cancer cell lines including MCF-7, H460, HT-29, and CEM.

aciculatin

1

2

3

4

5

RESULTS AND DISCUSSION

The ethanolic extract of the whole grass C. aciculatis was successively partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc and then n BuOH . The EtOAc-soluble material was sequentially chromatographed on silica gel, Sephadex LH-20, and C_{18}-OPN columns to give three new flavones, 7-de-O-methylaciculatin (1), 8-C- β -D-boivinopyranosylapigenin (2), and aciculatinone (3), and six known compounds, kaempferol, ${ }^{7}$ tricin, ${ }^{8}$ taxifolin, ${ }^{9}$ 6,7,4'trihydroxyflavone, ${ }^{10}$ trans-oxyresveratrol, ${ }^{11}$ and aciculatin. ${ }^{1}$ The n - BuOH -soluble material was repeatedly separated on silica gel, Sephadex LH-20, and C_{18}-OPN columns to afford the new flavone $4^{\prime}-O$-glucosylaciculatin (4) and two known flavones, apigenin- 8 -carbaldehyde (5) ${ }^{12}$ and luteolin- 7 -sulfate. ${ }^{13}$ Luteolin-7-sulfate was previously synthesized by sulfation of luteolin ${ }^{13}$ and was isolated from a natural source for the first time.

Compound 1 was obtained as a light yellow powder, and its molecular formula was deduced as $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}$ from its HREIMS and NMR data. The IR spectrum of 1 showed the presence of hydroxy ($3500 \mathrm{~cm}^{-1}$) and carbonyl ($1659 \mathrm{~cm}^{-1}$) groups. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were similar to those of aciculatin, ${ }^{1}$ an apigenin C-glycoside, except for the absence of one methoxy group (Table 1). The analysis of the aromatic regions in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra suggested compound 1 was a monosubstituted apigenin. The presence of a β-C-digitoxosyl

[^0]Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Compounds from Chrysopogon aciculatis ${ }^{a}$

position	$1^{\text {b }}$		$2^{\text {b }}$		3^{6}		4^{c}		5^{c}	
	$\delta_{\mathrm{H}}(J$ in Hz$)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(J$ in Hz$)$	$\delta_{\text {C }}$	$\delta_{\text {H }}(J$ in Hz$)$	$\delta_{\text {C }}$	$\delta_{\text {H }}(J$ in Hz$)$	$\delta_{\text {C }}$	$\begin{gathered} \delta_{\mathrm{H}}(J \text { in } \\ \mathrm{Hz}) \end{gathered}$	$\delta_{\text {C }}$
2		164.7		164.7		165.5		162.5		164.1
3	6.67 s	103.7	6.66 s	103.8	6.69 s	103.9	6.95 s	103.5	7.01 s	103.5
4		183.2		183.2		183.5		182.4		181.5
5		162.0		162.0		163.6		161.0		166.7
6	6.17 s	100.4	6.17 s	100.5	6.48 s	95.9	6.53 s	95.3	6.26 s	98.8
7		163.3		163.7		163.3		162.1		168.5
8		105.4		106.4		106.7		107.7		104.1
9		154.3		153.8		156.1		154.9		157.9
10		105.3		105.0		105.8		104.6		103.6
$1 '$		123.0		123.2		123.4		124.3		120.7
$2^{\prime}, 6^{\prime}$	8.07 d (9.0)	129.5	8.02 d (9.0)	129.4	8.08 d (8.4)	129.6	8.16 d (8.4)	128.5	8.10 d (8.4)	129.0
$3^{\prime}, 5^{\prime}$	7.01 d (9.0)	116.9	7.00 d (9.0)	116.9	7.06 d (8.4)	116.9	7.19 d (8.4)	116.5	6.94 d (8.4)	116.0
4^{\prime}		162.1		162.1		162.1		160.5		161.6
$5-\mathrm{OH}$	12.95 s		12.94 s		13.41 s		13.24 s		14.01 br s	
$7-\mathrm{OCH}_{3}$					3.97 s	57.0	3.89 s	56.6		
$1^{\prime \prime}$	5.77 dd (2.4, 11.4)	70.3	5.77 dd (2.4, 12.0)	70.3	$\begin{aligned} & 5.40 \mathrm{dd}(3.0, \\ & 12.0) \end{aligned}$	72.2	$\begin{aligned} & 5.44 \mathrm{dd}(2.0, \\ & 12.0) \end{aligned}$	64.9	10.38 s	188.3
$2^{\prime \prime}$	$\begin{aligned} & 2.11 \text { ddd }(2.4,11.4, \\ & 14.4) \end{aligned}$	38.9	1.84 td (2.4, 14.4)	33.9	$\begin{aligned} & 2.51 \mathrm{dd}(3.0, \\ & 13.8) \end{aligned}$	45.6	$\begin{aligned} & 1.63 \mathrm{dd}(2.4, \\ & 14.4) \end{aligned}$	36.6		
	$\begin{aligned} & 2.20 \text { ddd }(2.4,3.6, \\ & 14.4) \end{aligned}$		$\begin{aligned} & 2.33 \text { ddd }(2.4,12.0, \\ & 14.4) \end{aligned}$		$\begin{aligned} & 3.55 \mathrm{dd}(12.0, \\ & 13.8) \end{aligned}$		$\begin{aligned} & 2.35 \mathrm{dt}(2.4, \\ & 13.8) \end{aligned}$			
$3 \prime$	4.18 br q (3.0)	68.0	4.12 br q (3.0)	68.2		207.0	3.95 br s	66.8		
$4 \prime$	3.49 dd (3.0, 9.6)	73.6	3.52 d (3.6)	70.4	4.09 d (9.6)	79.9	$3.24-3.34 \mathrm{~m}$	73.2		
$5 \prime$	$4.01 \mathrm{dq}(6.6,9.6)$	74.8	4.29 br q (6.6)	72.9	3.60 qd (6.0, 9.6)	80.3	$3.75 \mathrm{qd}(6.0,9.6)$	72.3		
$6 "$	1.38 d (6.6)	18.7	1.31 d (6.6)	17.3	1.48 d (6.0)	19.7	1.20 d (6.0)	18.6		
$1^{\prime \prime \prime}$							5.05 d (7.8)	99.9		
$2^{\prime \prime \prime}$							$3.24-3.34 \mathrm{~m}$	76.5		
$3^{\prime \prime \prime}$							3.18 t (10.5)	69.6		
$4^{\prime \prime \prime}$							$3.24-3.34 \mathrm{~m}$	73.1		
$5^{\prime \prime \prime}$							3.40 m	77.1		
$6^{\prime \prime \prime}$							3.47 m	60.6		
							$\begin{aligned} & 3.68 \mathrm{dd}(1.8, \\ & 11.4) \end{aligned}$			

${ }^{a}$ Measured at 600 MHz for ${ }^{1} \mathrm{H}$ NMR and 150 MHz for ${ }^{13} \mathrm{C}$ NMR. ${ }^{b}$ Measured in acetone- d_{6}. ${ }^{c}$ Measured in DMSO- d_{6}.
moiety was deduced by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and NOE experiments. In the HMBC spectrum, cross-peaks of $5-\mathrm{OH} /$ C5, C-6, C-10; H-6/C-5, C-7, C-8, C-10; and H-1"/C-7, C-8 indicated that the sugar moiety was attached to $\mathrm{C}-8$ via a $\mathrm{C}-\mathrm{C}$ linkage. A similar apigenin C -glycoside, torosaflavone A , has been isolated from Drymaria diandra ${ }^{14,15}$ and Cassia torosa; ${ }^{16}$ however, its sugar moiety was linked to C-6 instead of C-8. On the basis of the above NMR analysis, the structure of compound 1 was determined as $8-C-\beta$-D-digitoxopyranosylapigenin and was named 7-de-O-methylaciculatin.

Compound 2 was obtained as light yellow prisms and gave the same molecular formula as 1 according to HREIMS. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were similar to those of 1 except for the signals arising from the 2,6 -dideoxyhexosyl moiety. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the anomeric proton $\mathrm{H}-1^{\prime \prime}$ of the $2,6-$ dideoxyhexosyl moiety showed a signal at $\delta 5.77$ (dd, $J=2.4$, 12.0 Hz), in which the large coupling constant indicated the axial orientation of $\mathrm{H}-1^{\prime \prime}$ and β-linkage of the sugar moiety to the flavone. Furthermore, the coupling pattern of $\mathrm{H}-3^{\prime \prime}(\mathrm{br} \mathrm{q}, ~ J$ $=3.0 \mathrm{~Hz})$ suggested the equatorial orientation of $\mathrm{H}-3^{\prime \prime}$. The relative configuration of the 2,6-deoxyhexopyranose moiety was determined by NOE experiments. The enhancement of $\mathrm{H}-1^{\prime \prime}$ by irradiation of $\mathrm{H}-5^{\prime \prime}$ indicated that $\mathrm{H}-5^{\prime \prime}$ was in an axial position.

The signals of $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, and $\mathrm{H}-6^{\prime \prime}$ were enhanced by irradiation of $\mathrm{H}-4^{\prime \prime}$, which suggested that $\mathrm{H}-4^{\prime \prime}$ was in an equatorial position. Thus, the 2,6-dideoxyhexosyl moiety was deduced to be boivinopyranose. Its linkage to C-8 was confirmed by the HMBC correlations of $\mathrm{H}-1$ "/C-7, C-8; 5$\mathrm{OH} / \mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-10$; and $\mathrm{H}-6 / \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10$. On the basis of the above evidence, the structure of compound $\mathbf{2}$ was assigned as $8-C-\beta$-D-boivinopyranosylapigenin.

The molecular formula of 3 was deduced as $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}$ by HREIMS. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed a monosubstituted apigenin moiety like aciculatin and a sugar moiety that possessed a carbonyl carbon (δ_{C} 207.0). In the HMBC spectrum, the cross-peaks of $5-\mathrm{OH} / \mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-10 ; \mathrm{H}-$ $6 / \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10$; and $7-\mathrm{OCH}_{3} / \mathrm{C}-7$ revealed that the methoxy group was attached to C-7. Furthermore, the HMBC correlations of $\mathrm{H}-1^{\prime \prime}(\delta 5.40)$ to $\mathrm{C}-7, \mathrm{C}-8$, and $\mathrm{C}-9$ indicated that the sugar moiety was attached to $\mathrm{C}-8$ with a $\mathrm{C}-\mathrm{C}$ linkage. The carbonyl signal at $\delta 207.0$ exhibited HMBC correlations with H-2", H-4", and H-5", suggesting the position of the carbonyl group at C-3". Moreover, the coupling constant ($J=$ 9.6 Hz) of $\mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$ indicated that these two protons had trans-diaxial orientations. Thus, the structure was established as 3 and was named aciculatinone.

Compound 4 had the molecular formula $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{13}$ as determined from its HRFABMS. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra exhibited the typical resonances of a substituted apigenin moiety. The ${ }^{13} \mathrm{C}$ NMR spectrum showed signals similar to those of aciculatin except for six more signals, at $\delta 60.6,69.6$, $73.1,76.5,77.1$, and 99.9 , attributed to a glucose moiety. In the ${ }^{1} \mathrm{H}$ NMR spectrum, two anomeric protons appeared at $\delta_{\mathrm{H}} 5.05$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}\right)$ and $5.44(1 \mathrm{H}, \mathrm{dd}, J=2.0,12.0 \mathrm{~Hz}$, $\mathrm{H}-1^{\prime \prime}$), which correlated, respectively, with carbons resonating at $\delta_{\mathrm{C}} 99.9$ (C-1"') and 64.9 (C-1") in the HMQC spectrum. The coupling constants of the anomeric protons indicated that each sugar moiety was connected to the flavone via a β-linkage. Enzymatic hydrolysis of 4 with β-glucosidase gave aciculatin and glucose, suggesting that glucose was attached to the flavone through a $\mathrm{C}-\mathrm{O}$ bond. A positive optical rotation for the isolated glucose indicated that it was β-D-glucose. In the HMBC spectrum, the cross-peaks of $5-\mathrm{OH} / \mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-10 ; \mathrm{H}-6 / \mathrm{C}-5$, $\mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10$; and $\mathrm{H}-1$ "/ $\mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9$ revealed that the digitoxosyl moiety was attached to $\mathrm{C}-8$ through a $\mathrm{C}-\mathrm{C}$ linkage. On irradiation at $\delta_{\mathrm{H}} 5.05\left(\mathrm{H}-1^{\prime \prime \prime}\right)$, an NOE enhancement was observed for the signal at $\delta_{\mathrm{H}} 7.19\left(\mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right)$, indicating that the β-O-D-glucosyl moiety was linked to $\mathrm{C}-4^{\prime}$ via an ether linkage. This linkage was further confirmed by the HMBC correlation of $\mathrm{H}-1^{\prime \prime \prime}$ to $\mathrm{C}-4^{\prime}$. Thus, compound 4 was elucidated to be 8 -C- β-D-digitoxopyranosyl-4'-O- β-D-glucopyranosylapigenin.

Compound 5 was obtained as light yellow prisms and gave the molecular formula $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}$ according to HREIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed a monosubstituted apigenin moiety and a formyl group ($\delta_{\mathrm{H}} 10.38$ and δ_{C} 188.3). The HMBC cross-peaks of $\mathrm{H}-1$ "/C-7, C-9 and H-6/C-5, C-7, C-8, $\mathrm{C}-10$ indicated that the formyl group was attached to $\mathrm{C}-8$. Thus, compound 5 was identified as apigenin- 8 -carbaldehyde, which was previously obtained by oxidation of vitexin with sodium periodate ${ }^{12}$ and here isolated from nature for the first time.

Some of the isolates were evaluated for cytotoxic activity against human cancer cell lines (Table 2). Aciculatin, 1, 2, and

Table 2. Cytotoxicity of Isolated Compounds against Four Human Cell Lines

	cell line $\left(\mathrm{IC}_{50}\right.$ values in $\left.\mu \mathrm{M}\right)$			
compound	$\mathrm{MCF-7}^{a}$	$\mathrm{H} 460^{b}$	$\mathrm{HT}-29^{c}$	CEM d
aciculatin	3.16	46.94	25.98	2.65
$\mathbf{1}$	6.35	18.25	25.29	4.42
$\mathbf{2}$	74.98	11.96	10.00	2.58
$\mathbf{3}$	18.36	18.06	11.59	13.33
$\mathbf{4}$	>100	>100	>100	>100
doxorubicin	2.50	6.06	6.04	3.14

${ }^{a}$ MCF-7: human breast cancer cells. ${ }^{b} \mathrm{H} 460$: human lung cancer cells. ${ }^{c}$ HT-29: human colon cancer cells. ${ }^{d} \mathrm{CEM}$: human leukemia cells.

3 showed differential potency on different cancer cell lines. Noticeably, aciculatin and 1 indicated specificity of cytotoxicity on MCF-7 and CEM cell lines.

EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were determined on a Yanaco MP-I3 micro melting point apparatus and are uncorrected. Optical rotations were recorded with a JASCO DIP370 digital polarimeter. UV spectra were measured on a Hitachi U3310 spectrophotometer. IR spectra were recorded on a Nicolet

Avatar 320 FT-IR spectrometer. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and 2 D NMR spectra were recorded on a Varian VNMRS 600 MHz spectrometer. EIMS and HRMS were obtained on Finnigan MAT GCQ and JEOL JMS-700 spectrometers, respectively. Silica gel 60 (Merck, 230-400 mesh), Sephadex LH-20 (Amersham Biosciences, Sweden), and Cosmosil C_{18}-OPN (Nacalai Tesque, Kyoto Japan) were used for purification. β Glucosidase from almond (Nacalai Tesque, Kyoto Japan) was used for the hydrolysis of compound 4.

Plant Material. The whole grass C. aciculatis was collected in Taipei, Taiwan, in August 2006, and was authenticated by Professor Ching-Hsiang Hsieh, Department of Plant Industry, National Pingtung University of Science and Technology (NPUST). A voucher specimen (No.70652) was deposited in PPI Herbarium of NPUST.

Extraction and Isolation. The whole herb C. aciculatis (5.5 kg) was heated under reflux with $95 \% \mathrm{EtOH}(40 \mathrm{~L})$ for one hour. After filtration, the EtOH solution was concentrated in vacuo to provide a dark brown EtOH extract (462 g). The EtOH extract was partitioned with $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}(1: 1)$ to give EtOAc and $\mathrm{H}_{2} \mathrm{O}$ layers. The EtOAc layer was concentrated to afford an EtOAc extract (80.8 g). The $\mathrm{H}_{2} \mathrm{O}$ layer was further partitioned with $n-\mathrm{BuOH}$ to give $n-\mathrm{BuOH}$ and $\mathrm{H}_{2} \mathrm{O}$ layers. The $n-\mathrm{BuOH}$ layer was concentrated to yield an $n-\mathrm{BuOH}$ extract (48.4 g). The EtOAc extract was chromatographed on a silica gel column $(11 \times 60 \mathrm{~cm})$ eluted with a stepwise gradient system of n hexane/EtOAc ($15: 1 ; 10: 1 ; 5: 1 ; 1: 1 ; 1: 2 ; 0: 1$) to give six fractions (IVI). Fraction IV (eluted with n-hexane/EtOAc, $1: 1$) was rechromatographed on a Sephadex LH-20 column eluted with MeOH to afford kaempferol (2.6 mg). Fraction V (eluted with n-hexane/EtOAc, 1:2) was subjected to a Sephadex LH-20 column eluted with MeOH to provide three subfractions ($\mathrm{Va}-\mathrm{Vc}$). Fraction Va was chromatographed on silica gel with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(20: 1)$ as the eluent and Sephadex LH-20 with MeOH to give $3(18.2 \mathrm{mg})$. Fraction Vb was subjected to Sephadex LH-20 and silica gel columns eluted with MeOH and $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (10:1), respectively, to afford tricin (2.8 mg) and taxifolin (8.1 mg). Fraction Vc was purified by a Sephadex LH-20 column eluted with MeOH and a silica gel column eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (7:1) to yield $6,7,4$ '-trihydroxyflavone (1.3 mg) and trans-oxyresveratrol (3.8 mg). Fraction VI (eluted with EtOAc) was further separated on a Sephadex LH-20 column eluted with MeOH to afford aciculatin (652.0 mg) and a subfraction, VIa. Fraction VIa was subjected to a silica gel column eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(10: 1)$ and a C_{18}-OPN column eluted with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (7:3) to give 1 (67.8 mg) and $2(44.9 \mathrm{mg})$. The $n-\mathrm{BuOH}$ extract was separated with a Sephadex LH-20 column eluted with MeOH to give five fractions (VII-XI). Fraction VIII was chromatographed on a C_{18}-OPN column eluted with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(7: 3)$ to afford $4(1.72 \mathrm{~g})$ and $5(2.5 \mathrm{mg})$. Luteolin-7-sulfate (9.0 mg) was obtained from fraction XI through a Sephadex LH-20 column eluted with MeOH .

7-De-O-methylaciculatin (8-C- β-d-digitoxopyranosylapigenin, 1): light yellow powder, mp $188-190{ }^{\circ} \mathrm{C}\left(3: 1 \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}\right)$; $[\alpha]_{\mathrm{D}}+79(c 0.54, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 331(4.31), 271$ (4.31), 213 (4.55) nm; IR (KBr) $\nu_{\text {max }} 3500,1659,1611,1576,1544$, 1449, 1354, 1243, $1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; EIMS $m / z 400[\mathrm{M}]^{+}(14), 382(21), 307$ (87), 284 (31), 270 (100), 256 (60), 189 (36); HREIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 400.1161$ (calcd for $\left.\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}, 400.1164\right)$.

8-C- $\boldsymbol{\beta}$-d-Boivinopyranosylapigenin (2): light yellow prisms, mp $205-207{ }^{\circ} \mathrm{C}\left(3: 1 \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}+85(c 0.20, \mathrm{MeOH})$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 333(4.31), 271$ (4.29), 212 (4.54) nm; IR $(\mathrm{KBr}) \nu_{\max } 3400,1659,1611,1580,1544,1449,1354,1239,1176$ cm^{-1}; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; EIMS $m / z 400[\mathrm{M}]^{+}(5)$, 382 (15), 307 (100), 284 (36), 270 (85), 256 (39), 189 (50); HREIMS $m / z[\mathrm{M}]^{+} 400.1165$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}, 400.1172$).

Aciculatinone (3): light yellow prisms, mp $146-148{ }^{\circ} \mathrm{C}(3: 1$ $\left.\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}+62(c 0.27, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon)$ 335 (4.31), 268 (4.15), 214 (4.36) nm; IR (KBr) $\nu_{\max } 3500,1718$, 1651, 1603, 1500, 1455, 1362, 1243, $1180 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; EIMS $m / z 412[\mathrm{M}]^{+}$(42), 367 (15), 325 (23), 296 (42), 295 (45), 117 (90), 58 (100); HREIMS $m / z[M]^{+} 412.1152$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{8}, 412.1146$).

4'-O-Glucosylaciculatin (4): light yellow prisms, mp 173-175 ${ }^{\circ} \mathrm{C}$ $\left(2: 1 \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}-10(c 0.20, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }$ $(\log \varepsilon) 315$ (4.21), 271 (4.29), 214 (4.48) nm; IR (KBr) $\nu_{\max } 3500$, 1659, 1603, 1497, 1437, 1378, 1239, $1073 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; FABMS $m / z 577[\mathrm{M}+\mathrm{H}]^{+}$(10), 460 (10), 338 (21), 307 (60), 289 (40), 154 (100); HRFABMS $m / z[M+H]^{+}$ 577.1937 (calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{13}, 577.1938$).

Apigenin-8-carbaldehyde (5): light brown prisms, mp 273-275 ${ }^{\circ} \mathrm{C}\left(2: 1 \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 333$ (3.96), 251 (4.00), 231 (4.00) nm; IR (KBr) $\nu_{\max } 3450,1667,1611,1564,1508$, 1441, 1374, 1287, 1243, $1180 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; EIMS $m / z 298[\mathrm{M}]^{+}$(100), 270 (6), 178 (23), 118 (19); HREIMS $m / z[\mathrm{M}]^{+} 298.0471$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}, 298.0477$).

Enzymatic Hydrolysis of 4. Compound $4(20 \mathrm{mg})$ and β glucosidase (10 mg) were dissolved in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the solution was allowed to stand at $37{ }^{\circ} \mathrm{C}$ for 24 h . After addition of $\mathrm{H}_{2} \mathrm{O}(10$ mL), the reaction mixture was extracted with EtOAc. The EtOAc extract was concentrated in vacuo to give aciculatin (10 mg), which showed NMR spectral data identical with those of the authentic sample. The aqueous layer was concentrated and then chromatographed on a silica gel column eluted with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (8:1) to afford D-glucose $(4 \mathrm{mg})$, which showed a specific rotation of +21.1 (c $0.54, \mathrm{H}_{2} \mathrm{O}$). Its NMR data were essentially identical with those reported in the literature, ${ }^{17}$ and the retention factor $\left(R_{f}=0.24\right)$ in TLC was the same as that of the authentic sugar with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (6:1) as the solvent system.

Cytotoxic Assay. Four human cancer cell lines, MCF-7 (breast cancer), H-460 (lung cancer), HT-29 (colon cancer), and CEM (leukemia), were obtained from the Bioresources Collection and Research Center (BCRC), Hsin-Chu, Taiwan. Some of the isolates were evaluated for cytotoxic activity using a previously described protocol. ${ }^{18}$ Doxorubicin was used as a positive control.

ASSOCIATED CONTENT

(5) Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: 886-4-26318652, ext 5601. E-mail: ccchen@sunrise.hk. edu.tw.

ACKNOWLEDGMENTS

We thank the National Center for High-Performance Computing, Taipei, Taiwan, for computer time and facilities. This research was supported by the National Science Council of the Republic of China (NSC 98-2320-B-241-003-MY3).

REFERENCES

(1) Carte, B. K.; Carr, S.; DeBrosse, C.; Hemiling, M. E.; Mackenzie, L.; Offen, P.; Berry, D. E. Tetrahedron 1991, 47, 1815-1822.
(2) Shen, C. C.; Ni, C. L.; Huang, Y. L.; Huang, R. L.; Chen, C. C. J. Nat. Prod. 2004, 67, 1947-1949.
(3) Shen, C. C.; Wan, S. T.; Tsai, S. Y.; Yang, H. C.; Shieh, B. J.; Chen, C. C. J. Nat. Prod. 2005, 68, 791-793.
(4) Shen, C. C.; Lin, T. W.; Huang, Y. L.; Wan, S. T.; Shieh, B. J.; Chen, C. C. J. Nat. Prod. 2006, 69, 1237-1240.
(5) Shen, C. C.; Tsai, S. Y.; Wei, S. L.; Wan, S. T.; Shieh, B. J.; Chen, C. C. Nat. Prod. Res. 2007, 21, 377-380.
(6) Shen, C. C.; Lin, C. F.; Huang, Y. L.; Wan, S. T.; Chen, C. C.; Sheu, S. J.; Lin, Y. C.; Chen, C. C. J. Chin. Chem. Soc. (Taipei) 2008, 55, 854-857.
(7) Itoh, T.; Ninomiya, M.; Yasuda, M.; Koshikawa, K.; Deyashiki, Y.; Nozawa, Y.; Akao, Y; Koketsu, M. Bioorg. Med. Chem. 2009, 17, 53745379.
(8) Huang, K. S.; Wang, Y. H.; Li, R. L.; Lin, M. J. Nat. Prod. 2000, 63, 86-89.
(9) Wang, P. H.; Lee, S. S. J. Chin. Chem. Soc. (Taipei) 1999, 46, 215-219.
(10) Williams, R. D.; Fawzi, A.; Lahlou, E. H. Patent WO 2007038875, 2007.
(11) Su, B. N.; Cuendet, M.; Hawthorne, M. E.; Kardono, L. B. S.; Riswan, S.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2002, 65, 163-169.
(12) Evans, W. H.; McGookin, A.; Robertson, J. A.; Williamson, W. R. N. J. Chem. Soc. 1957, 3510-3523.
(13) Barron, D.; Ibrahim, R. K. Tetrahedron 1987, 43, 5197-5202.
(14) Ding, Z. T.; Yang, X. Q.; Cao, Q. E.; Li, F. J. Integr. Plant Biol. 2005, 47, 1140-1144.
(15) Hsieh, P. W.; Chang, F. R.; Lee, K. H.; Hwang, T. L.; Chang, S. M.; Wu, Y. C. J. Nat. Prod. 2004, 67, 1175-1177.
(16) Kitanaka, S.; Ogata, K.; Takido, M. Chem. Pharm. Bull. 1989, 37, 2441-2444.
(17) Roslund, M. U.; Tahtinen, P.; Niemitz, M.; Sjoholm, R. Carbohydr. Res. 2008, 343, 101-112.
(18) Cheng, J. J.; Zhang, L. J.; Cheng.; Cheng, H. L.; Chiou, C. T.; Lee, I. J.; Kuo, Y. H. J. Nat. Prod. 2010, 73, 1655-1658.

[^0]: Received: September 27, 2011
 Published: January 24, 2012

